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Abstract. Solitary waves propagating on a variable background are conventionally described by the variable-
coefficient Korteweg-deVries equation. However, the underlying physical system is often Hamiltonian, with a
conserved energy functional. Recent studies for water waves and interfacial waves have shown that an alternative
approach to deriving an appropriate evolution equation, which asymptotically approximates the Hamiltonian, leads
to an alternative variable-coefficient Korteweg-deVries equation, which conserves the underlying Hamiltonian
structure more explicitly. This paper examines the relationship between these two evolution equations, which
are asymptotically equivalent, by first discussing the conservation laws for each equation, and then constructing
asymptotically a slowly-varying solitary wave.
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1. Introduction

It is now well-known that one of the principal canonical equations to describe weakly non-
linear long waves is the Korteweg-deVries (KdV) equation, which has the familiar solitary
wave as one of its primary solutions. When the background in which this solitary wave is
propagating is not uniform, but instead is variable on some long length-scale, then it is also
well-known that the constant-coefficient KdV equation is replaced by the variable-coefficient
KdV equation

uτ + cτ

2c
u+ µ

c
uuξ + λ

c3
uξξξ = 0. (1.1)

Here the independent variables are

τ = ε2x, ξ = 1

ε2

∫ τ

0

dτ ′

c(τ ′)
− t, (1.2)

and the coefficientc,µ andλ are all functions ofτ . Herec is the linear long-wave phase speed
of the underlyng physical system, whileµ andλ are the nonlinear and dispersive coefficients,
respectively, and are also determined by the linear long-wave structure of the underlying
physical system. The independent variablesx andt represent space and time, respectively, in a
suitable long-wave non-dimensionalization, andε is a small parameter such thatε2 measures
the effects of both nonlinearity and dispersion. Equations of the form (1.1) have been derived

207958.tex; 1/06/1999; 14:29; p.1
PDF O/S V.S. (edited) (WEB2C) INTERPRINT Art. ENGI873 (engikap:engifam) v.1.1



90 R. Grimshaw and S. R. Pudjaprasetya

for solitary water waves by Ostrovsky and Pelinovsky [1], Kakutani [2] and Johnson [3], and
by Grimshaw [4] (see also [5] for a summary) for internal solitary waves.

Recently, however, van Groesen and Pudjaprasetya [6] (see also [7] have pointed out that,
for the case of solitary water waves, the underlying physical system is Hamiltonian, with
a conserved Hamiltonian functional representing energy. They exploited this to derive an
alternative to the conventional variable-coefficient KdV equation (1.1), in that the energy is
approximated more accurately than in (1.1), and which conserves the underlying Hamiltonian
structure more explicitly. A similar result was obtained for interfacial waves in [8]. The new
Hamiltonian variable-coefficient KdV equation is formulated in terms of the Hamiltonian

H =
∫ ∞
−∞

J dx, (1.3a)

where

J = 1
2u

2+ ε2{−(1
2λ)u

2
x + (1

6µ)u
3}. (1.3b)

HereH is an approximation to the full Hamiltonian of the underlying physical system, with
an error of 0(ε4). The evolution equation is then

ut = −0δH
δu
, (1.4a)

where

0 = 1

2

{
c
∂

∂x
+ ∂

∂x
c

}
, (1.4b)

or

ut +
{
c
∂

∂x
+ 1

2cx

}
{u+ ε2λuxx + ε2(1

2µ)u
2} = 0. (1.4c)

The skew-symmetric operator in (1.4a) ensures that this equation is Hamiltonian, and con-
serves the HamiltonianH . Although evolution equations of the form (1.4a) have so far only
been obtained for the special case of solitary water and interfacial waves, we conjecture that
(1.4) is an alternative Hamiltonian formulation of (1.1) in all cases when (1.1) holds. In support
of this we note that (1.4a) and (1.1) are asymptotically equivalent under the transformation
(1.2), which converts (1.4a) into the equation

uτ + cτ

2c
u+

{
1

c

∂

∂ξ
+ ε2

(
∂

∂τ
+ cτ

2c

)}
M = 0,

where

M = λ

c2
uξξ + (1

2u)u
2 + ε2

(
λ

c

)
τ

uξ + 2ε2λ

c
uξτ +O(ε4). (1.5)

This reduces to (1.1) with the omission ofO(ε2) terms.
In this paper, we explore further the relationship between the two alternative variable-

coefficient KdV equations (1.1) and (1.4). In Section 2, we examine the conservation laws of
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the two equations, and the relationships between them. In Section 3 we construct the asymp-
totic slowly-varying solitary wave solution of (1.4), and compare it with the corresponding
solution of (1.1). We conclude with some discussion in Section 4.

2. Conservation laws

The Hamiltonian variable-coefficient KdV equation (1.4a) conserves the Hamiltonian itself,
by virtue of the skew-symmetry of the operator0, and so

E =
∫ ∞
−∞

J dx = constant, (2.1)

where the densityJ is defined by (1.3b). Here, of course,E is just the HamiltonianH , but
we have renamed it here, since in many physical applications it corresponds to the energy.
Equation (1.4a) also conserves the ‘mass’

M =
∫ ∞
−∞

u√
c

dx = constant. (2.2)

We note that, althoughM is an exact invariant for (1.4a), it usually differs from the exact
expression for mass in the underlying physical system by terms ofO(ε2), due to the gener-
ation of left-going waves (see, for instance, [8–10]). Because of the explicit dependence of
c on τ , Equation (1.4a) will not, in general, possess any other invariants. In particular, the
‘momentum’

P =
∫ ∞
−∞

1

2

u2

c
dx, (2.3)

is not conserved. Instead, we find that

dP

dt
= −ε2

∫ ∞
−∞

cτ

2c
u2 dx +O(ε4) (2.4)

Next we turn to the standard variable-coefficient KdV equation (1.1). It is readily shown
that this has two invariants

M∗ =
∫ ∞
−∞

√
cudξ = constant, (2.5a)

and

E∗ =
∫ ∞
−∞

1
2cu

2 dξ = constant. (2.5b)

Note thatM∗ andE∗ are the counterparts of the expressionsM (2.2) andE (2.1), respectively,
since, to leading order inε2, the transformation (1.2) implies that dx= c dξ . Again, it would
seem that there are, in general, no other invariants of (1.1), and in particular, the momentum

P ∗ =
∫ ∞
−∞

1
2u

2 dξ (2.6)
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is not conserved. Instead, we find that

dP ∗

dτ
= −

∫ ∞
−∞

1

2

cτ

c
u2 dξ. (2.7)

Of course, (2.6) and (2.7) are just the counterparts of (2.2) and (2.4), respectively.
It is interesting to observe that (1.1) is also a Hamiltonian system in the sense that it can

be expressed in the form

uτ + cτ

2c
u = −1

c

∂

∂ξ

δH ∗

δu
, (2.8a)

where

H ∗ =
∫ ∞
−∞

K∗ dξ, (2.8b)

and

K∗ = − λ

2c2
u2
ξ + (1

6µ)u
3. (2.8c)

However, becauseK∗ depends explicitly onτ , H ∗ is not a conserved quantity. It is pertinent
to note here that even though12u

2 + ε2K∗ is just the Hamiltonian densityJ (with an error
of O(ε2)), the corresponding quantityE∗ + ε2cH ∗ is not conserved by Equation (1.1), or its
extended form (1.5). The reason for this is that theO(ε2) terms in the transformation from the
variablex in the integrand of (2.1) to the variableξ in the integrand of (2.5b) must be taken
into account.

Indeed, it is clear that the energyE (2.1), being a conserved quantity for (1.4), should
remain a conserved quantity toO(ε4) at least, under the transformation (1.2). Thus, we see
that

J (x, t) = Ĵ (ε2s, ξ), (2.9a)

where

s(τ ) = 1

ε2

∫ τ

0

dx′

c(τ ′)
. (2.9b)

Hence, noting thatξ = s − t (1.2), we find

E =
∫ ∞
−∞

J (x, t)dx =
∫ ∞
−∞

Ĵ (ε2(ξ + t), ξ )c dξ. (2.10)

Here we are, for convenience, temporarily usingτ̂ = ε2s in place ofτ . Next, we expand the
integrand in (2.10) as follows, so that

E =
∫ ∞
−∞

Ĵ (ε2t, ξ )c dξ + ε2
∫ ∞
−∞

ξ(cĴ )τ̂ dξ + · · · . (2.11)
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Then, on reverting toτ in place of̂τ in (2.11), we can conclude that the correct expression for
the energyE with respect to Equation (1.1) is

E =
∫ ∞
−∞

J (τ, ξ)c dξ + ε2
∫ ∞
−∞
(cJ )τ cξ dξ +O(ε4). (2.12)

From (1.3b), and again using the transformation (1.2), we see that

J (τ, ξ) = 1
2u

2+ ε2

(
− λ

2c2
u2
ξ + (1

6µ)u
3

)
+O(ε4). (2.13)

Next, we utilize Equation (1.1) to evaluate(cJ )τ in (2.12) and finally obtain the result that

E =
∫ ∞
−∞

1
2cu

2 dξ + ε2
∫ ∞
−∞

(
−2λ

c2
u2
ξ + (1

2µ)u
3

)
c dξ +O(ε4). (2.14)

The first term here is justE∗ (2.5b), and this is conserved by Equation (1.1). It can now be
verified that the full expression (2.14) is conserved toO(ε4) by the extended form of Equa-
tion (1.1), namely Equation (1.5). It is now also clear that, while (1.4) conserves the correct
expressionE (2.1) for the energy to an error ofO(ε4) (recall thatH (1.3) is an approximation
to the full Hamiltonian with anO(ε4) error), the traditional Equation (1.1) only conservesE
to an error ofO(ε2).

3. Slowly-varying solitary wave

In this section we construct the slowly-varying solitary-wave solution of the Hamiltonian
variable-coefficient KdV equation (1.4a), in order to compare the result with the standard
well-known corresponding theory for the variable-coefficient KdV equation (1.1). Thus here
we let

s = σx (3.1)

and assume thatc, λ andµ are all functions ofs. Here we must assume thatσ � ε2, in
order that the terms arising from the slow variation are smaller than theO(ε2) terms in (1.4a).
Indeed, we now adopt the point of view that, even thoughε2 is a small parameter, we shall
regard (1.4a) as a given ‘exact’ equation. Strictly, we should also assume thatσ � ε4 so
that terms ofO(σ) are greater than theO(ε4) error terms in (1.4a). Note also that in terms
of τ (1.2)

s = βτ, β = σ/ε2 (3.2)

and we are assuming thatβ � 1.
The asymptotic procedure for constructing the slowly-varying solitary wave is standard as

far as (1.1) is concerned (see, for instance, Grimshaw and Mitsudera, [11]), so here we give
just a brief outline. We seek an asymptotic solution of (1.4a) whose leading term is a solitary
wave of variable amplitudea(s) and variable speedV (s). Thus we put

θ = 1

σ

∫ ′s

0

ds′

V (s′)
− t, (3.3)
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and seek a solution of (1.4a) of the form

u = u0(θ, s)+ σu1(θ, s)+O(σ 2), (3.4a)

V = V0(s)+ σV1(s)+O(σ 2). (3.4b)

It is readily found thatu0 satisfies the equation

(V0− c)
c

u0 = ε2

(
λ

V 2
0

u0θθ + (1
2µ)u

2
0

)
, (3.5)

which has the well-known solitary-wave solution

u0 = a sech2 γ θ, (3.6a)

where

V0− c
c
= ε2µa

3
= 4ε2λ

(
γ

V0

)2

. (3.6b)

At the next order we obtain the following equation foru1

c

V0

∂

∂θ

{
−(V0− c)

c
u1+ ε2

(
λ

V 2
0

u1θθ + µu0u1

)}
+ F1 = 0, (3.7a)

where

F1 = (V0u0)s − cs

2c
(V0u0)+ ε

2c

V0

∂

∂θ

{
2λ

V0
U0θs +

(
λ

V0

)
s

u0θ

}

+V1

{
− c

V 2
0

u0θ + ε2

[
−3cλ

V 4
0

u0θθθ − cµ
V 2

0

u0u0θ

]}
. (3.7b)

Here we have used (3.5) to simplify the expression forF1. The compatibility condition for
(3.7a) is∫ ∞

−∞
F1u0 dθ = 0, (3.8)

and this then yields the equation

∂

∂s

{∫ ∞
−∞

1

2

V 2
0 u

2
0

c
dθ − ε2

∫ ∞
−∞

λ

V0
u2

0θ dθ

}
= 0, (3.9a)

and so∫ ∞
−∞

1

2

V 2
0 u

2
0

c
dθ − ε2

∫ ∞
−∞

λ

V0
u2

0θ dθ = constant. (3.9b)

This last expression thus determines the variation of the amplitudea(s). Before substituting
(3.6a) in (3.9b) to achieve this, we note that (3.9b) can also be written in the form (using (3.5)),∫ ∞

−∞
1
2V0u

2
0 dθ + ε2

∫ ∞
−∞

(
− λ

2V 2
0

u2
0θ +

µ

6
u3

0

)
V0 dθ = constant. (3.10)
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Noting that dx = V dθ for a fixed value oft (see (3.3), we see that the left-hand side of (3.10)
is just the energyE (2.1) evaluated for the leading-order solitary-wave termu0 (3.6a). Thus,
as expected, the variation of the solitary wave amplitude is determined by the conservation of
energy.

The analogous theory for the conventional KdV equation (1.1) leads to the same expression
(3.10), but with the omission of theO(ε2) term on the left-hand side of (3.10), the replacement
of V0 with c, and dθ with dξ , again with errors ofO(ε2). Indeed, this is to be expected, since
the conservation of energy for (1.1) is given by (2.5b). In making this comparison, we note
that the transformation of variables (1.2) implies that for (1.1)u0 is again given by (3.6a)
which can now be written as

u0 = a sech2γ θ, (3.11a)

where

θ = ξ − 1

β

∫ s

0
W(s′)ds′, (3.11b)

and

W = 1

ε2

(V − c)
V c

. (3.11c)

Using (3.6b) we see that, to leading order inε2, this last relation becomes

W0 = µa

3c
= 4λ

c3
γ 2. (3.12)

Thusu0, given by (3.11a), reduces to the well-known solitary-wave solution of the conven-
tional KdV equation (1.1).

Next we substitute the expressions (3.6a) foru0 in (3.10) and obtain,

|a|3/2
(
λ

|µ|
)1/2 {

1+ ε2µa

5

}
= constant. (3.13)

This is the required expression for the variation of the amplitudea(s). Remarkably, it depends
only onλ andµ, and not onc, although, of course,V0 andγ do depend onc as well. To leading
order inε2, (3.13) reduces to the well-known result for the standard variable-coefficient-KdV
equation (1.1). Further, we see from (3.13) that theO(ε2) term is significant in practice only
whenµ4/λ becomes relatively large. Indeed, to emphasise this (3.13) can be written in the
form

A

{
1+ ε

2A

5

|µ|4/3
λ1/3

}
= constant, (3.14a)

where

A = |a|3/2
(
λ

|µ|
)1/2

. (3.14b)
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Figure 1. A plot ofA = |a|3/2(λ/|µ|)1/2 (see (3.24))
as a function of|µ|4/3/λ1/3 for various values of
ε; ε = 0 (top line), 0·3 (middle line, - - - ) and 0·6
(bottom line).

Figure 2. A plot ofa as a function ofh (see (3.15))
for various values ofε; ε = 0 (top line), 0·3 (middle
line, - - - ) and (0·6) (bottom line).

.

The expression (3.14a) is plotted as a function of|µ4/3/λ1/3 for various values ofε2 in Fig-
ure 1. It is interesting to note that the effect of theO(ε2) term is always to reduce the value of
A.

As an illustration, let us consider the case of a solitary wave propagating over variable
depthh. In this caseλ = 1

6h
2 andµ = 3/2h while a is the amplitude of the solitary wave

above the undisturbed level, and so (3.13) reduces to

(ah)3/2
{

1+ ε2 3a

10h

}
= constant. (3.15)

To leading order inε2, this gives the well-known result thata ∝ h−1. The effect of theO(ε2)

term is shown in Figure 2, where we plota as a function ofh for various values ofε2. We see
that the effect of this term is to reduce the amplitude growth, particularly ash→ 0.

Next we recall the well-known property that, although the slowly-varying solitary wave
conserves energy, it cannot by itself conserve mass (M, see (2.2)). Instead, this is conserved
by the creation of a trailing shelf of amplitudeO(σ), but whose length isO(σ−1). At the rear
of the solitary wave the amplitude of the trailing shelf isσa−1 , whereu0 → 0 asθ → −∞,
butu1→ u−1 . We readily find from (3.7) that

(V0− c)
V0

u−1 = −
√
c
∂M0

∂s
, (3.16a)
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where

M0 =
∫ ∞
−∞

V0u0√
c

dθ. (3.16b)

HereM0 is the leading-order term (with respect toσ ) in the evaluation of the expression (2.2)
for the mass of the solitary wave alone. Then, using (3.6) to evaluateM0, we find that

ε2u−1 = −
6
√
c

µa

∂

∂s

{(
12λ|a|
c|µ|

)1/2
}
. (3.17)

Note thatu−1 is proportional toε−2, so that the amplitude of the trailing shelf is proportional
to β = σ/ε2. Indeed it is readily verified that (3.17) agrees with the amplitude of the trailing
shelf that is calculated directly from (1.1). However, here the variation of the amplitude|a|
depends explicitly onε2 (see (3.13)), and so consequentlyu−1 will also depend explicitly on
ε2. To demonstrate the variation ofu−1 , we note that, using (3.14b)√

c

12
M0 = 2 signµ

(
λA

|µ|
)1/3

. (3.18)

Since, to leading order inε2, A is constant, it follows that the variation ofM0, and hence that
of u−1 , is largely determined by the combination(λ/|µ|)1/3c−1/2. In particular, it is possible
in principle for M0 to increase or decrease independently of whether|a| is increasing or
decreasing (note that|a| increases asλ/|µ| decreases to leading order inε2, but its variation
is independent ofc).

Finally we note that the first-order speed-correction termV1 is not determined at this order,
and it is necessary to proceed to second order to find it. The method for completing this
calculation has been described in [11] for an equation equivalent to (1.1), and the same method
could be applied here.

4. Conclusions

In this paper we have compared two alternative forms of the variable-coefficient KdV equa-
tion, namely the conventional form (1.1) and a more recent Hamiltonian form (1.4). Although
a little more cumbersome in that it contains the governing small parameterε2 explicitly, the
Hamiltonian form (1.4) should, in principle, be preferred, as it conserves the energy func-
tionalE (2.1) to a higher order of approximation than (1.1). However, the two equations are
asymptotically equivalent, and indeed (1.5) demonstrates that the Hamiltonian form (1.4) is
just (1.1) with the inclusion of thoseO(ε2) terms needed to ensure that the ‘full’ Hamiltonian
(1.3) is conserved, rather than just its leading term. This, in fact, is the principal conclusion
from our discussion of the conservation laws in Section 2.

In Section 3 we have considered the slowly-varying solitary-wave solution of the Hamilto-
nian form (1.4) in order to compare it with the well-known slowly-varying solitary wave solu-
tion of (1.1). As expected, the amplitude variation is determined by conservation of energy,
and hence the result (3.14) obtained from (1.4) differs byO(ε2) terms from the equivalent
result obtained from (1.1). These terms always act to reduce the variation of the amplitude.
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98 R. Grimshaw and S. R. Pudjaprasetya

However, in practice, it would seem that even for moderate values ofε (up to 0·6), the actual
effect of theO(ε2) terms is quite small.
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